

SOMMACT Self Optimising Measuring MAChine Tools

Grant Agreement no.: CP-FP 229112-2

Start Date: 2009-09-01

Duration: 36 month

Partners:

ALESAMONTI S.r.I. (IT) - Project Coordinator
API VARESE (IT)
FIDIA S.p.A. (IT)
HAVLAT GmbH (DE)
IBS PE BV (NL)
INRIM (IT)
ISM-3D SL (SP)
KOVOSVIT MAS AS (CZ)
SUPSI (CH)
TTS S.r.I. (IT)
University of Huddersfield (UoH) (UK)
WEISS GmbH (DE)

Deliverable D3.3

Study on the different types of long-term stable sensors, including electronic levels, to measure machine component deformation

Document title: D3 3 Study on sensors Draft00.doc

Reference WP/Task: WP3 / T3.3

Lead Task beneficiary: ISM-3D

Author: Eugen TRAPET

Date: 2010-10-15

Revision: 00

Status: Draft Final

Nature 1): R

Dissemination level 2): CO

R = Report, P = Prototype, D = Demonstrator,
 O = Other

PU = Public, PP = Restricted to other programme participants, RE = Restricted to a group specified by the consortium, CO = Confidential, only for members of the consortium

Executive summary

During the first year of the SOMMACT project, different sensors have been studied with respect to their possible integration in various machine-resident reference systems. The sensors shall be each suited for one or several of the following different applications:

- To measure the change of distance between specific points of the machine structure which
 may have distances of up to the complete length of the machine axes ("extensometers"); for
 this application the sensors must be very long-term stable;
- For the measurement of relative position between a slider and a reference beam with discrete targets in up to 6 degrees of freedom, normally composed of several sensors with each detecting either 1, 2 or 3 degrees of freedom;
- For the measurement of relative position between a slider and a reference beam with continuous targets up to 6 degrees of freedom, normally composed of several sensors with each detecting 1 or 2 degrees of freedom.

The following sensors were selected from possible candidates and experimentally studied:

- Capacitive distance sensors;
- 2. Inductive distance sensors (Eddy current sensors);
- 3. Laser triangulation distance sensors;
- 4. Cameras as 1D and 2D sensors in combination with a number of different targets;
- 5. Commercial electronic levels and a self-designed electronic level on the basis of camera sensors and ball targets;
- 6. Incremental scales for thermally invariant position measurement.

The following special developments were made and/or studied:

- 7. The installation and test of incremental scales on thermo-mechanically invariant carbon fibre substrate on a test machine (X, Y, Z);
- 8. A biSLIDER method with a thermo-mechanically invariant spacer to measure the thermal compensation factor.

The main results were:

- a) Technically, the sensors studied were all suited for the purposes they were thought to be used; all are capable of measuring with a short term uncertainty of 1-2 μm; cameras were found not to be long-term stable; a suggestion was made to improve the long-term stability of cameras.
- b) The preferences, among the studied sensors, are chosen according to price, ruggedness in use and ease of integration:
 - Inductive sensors for the 1D extensometer application;
 - Camera sensors for the 2D measurement of targets on reference beams;
 - Incremental scales on carbon-fibre rods as position measuring devices;
 - Electronic levels as alternative reference systems.

SOMMACT Self Optimising Measuring MAChine Tools Grant Agreement no.: **CP-FP 229112-2 – Deliverable D3.3**

Table of contents

E	xecuti	ive summary	. 2
Ta	able o	of contents	. 3
1	Int	troduction	. 5
2	Ne	eeds and Goals for studying sensors in SOMMACT	. 6
	2.1	Direct measurement of non-ideal translations and rotations when moving the axes	. 6
	2.1	1.1 Measurement of position along the axes	. 6
	2.1	1.2 Measurement of deviations from the straight line movement	. 6
	2.2	Measurement of characteristic deformations and offsets between machine components	. 6
	2.3	Measurements with electronic levels	7
	2.4	Stability requirements	7
	2.4	4.1 Sensors-specific stability requirements	7
	2.4	4.2 Possible relaxation for sensors stability requirements	. 8
	2	2.4.2.1 Camera-based differential target measurement concepts	. 8
3		periments with video camera based sensors and optical distance sensors	
4	Ex	periments with optical distance sensors in SOMMACT	23
5	Ex	periments carried out with capacitive and inductive sensors	26
	5.1	Capacitance sensor tests	26
	5.2	Inductive sensor tests	29
	5.3	Straightness measurement using an inductive sensor	
	5.4	Long-term stability test of inductive sensor system	
	5.5	Heating tests (inductive sensors only)	
	5.6	Conclusions for capacitive and inductive sensors	33
6	Fir	rst experiments to develop an electronic level using camera sensors	34
7	Stı	udy on the performance of State-of-the-Art inclinometers	
	7.1	Assessment of accuracy and repeatability in favourable test conditions	36
	7.2	Preliminary Design of Experiments (DoE)	37
	7.3	Preliminary laboratory tests	
	7.4	Considerations on vibrations severity	
	7.5	On-going activities	41
8	Th	ne biSLIDER	
	8.1	Linear encoders	
	8.2	Concept of the biSLIDER	
		2.1 Procedure and signal processing	
9		ne optical self-centring probe	
	9.1	Contacting self-centring probes	
	9.2	Camera-based detection of sphere positions	45

SOMMACT Self Optimising Measuring MAChine Tools

Grant Agreement no.: CP-FP 229112-2 - Deliverable D3.3

9.3	Concept of the optical self-centring probe	45
9.4	Possible refinement of the optical self-centring probe by interferometry	47
10 Co	nclusions and suggestions	48
10.1	Interfacing of the sensors	48
10.2	Evaluation software platform	48
10.3	Calibration of the sensors	48
10.4	Selection criteria for the sensors	49
11 Re	eferences	50